
Sponsored through Framework Programme Sixth (Call 5) by

Document Information

Version: 2.0
Date : Oct 11, 2008
revision: 1

Owning Partner: AUTH

Author(s):
Ionannis Antoniades
Ioannis Samoladas
Sulayman K. Sowe
Gregorio Robles
Stefan Koch
Ksenia Fraczek
Anis Hadzisalihovic
Daniel Izquierdo-Cortazar

Reviewer(s):
Stefan Koch

To:
PUBLIC

Purpose of distribution:
Final Version

The FLOSSMetrics Consortium consists of: Universidad Rey Juan
Carlos, University of Maastrich, Wirtschaftsuniversitaet Wien, Aristotle
University of Thessaloniki, Conecta s.r.l., Zea Partners and Philips
Medical Systems PMS Nederland B.V.

Printed
on at

Status: Confidentiality:

[
[
[
[

 X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for FLOSSMETRICS
consortium only
- Intended for individual partner only

Deliverable ID: D1.1

Title:

Study of Available Tools

License for distribution:
This work is licensed under a Creative Commons Attribution-Share Alike 2.5 License.
(The license can be found in http://creativecommons.org/licenses/by-sa/2.5/)

 Copyright FLOSSMetrics Consortium 2006-2008

Study of Available Tools

Deliverable ID: D1.1

Page : 2 of 75

Version: 2.0
Date: Oct 11, 2008
Status : Final
Confid : Public

Deliverable: D1.1

Title: Study of Available Tools

Executive Summary:

This deliverable identifies, analyzes and evaluates all possible data sources on FLOSS projects with special
emphasis on data available for the next deliverables. Especially, repositories of FLOSS are discussed, then
the main information sources versioning systems, mailing lists and bug tracing systems are described.

2
 Copyright FLOSSMetrics Consortium

Study of Available Tools

Deliverable ID: D1.1

Page : 3 of 75

Version: 2.0
Date: Oct 11, 2008
Status : Final
Confid : Public

CHANGE LOG

Ver. Date Author Description
0.1 05/12/2006 Ionannis Antoniades

Ioannis Samoladas
Sulayman K. Sowe
Gregorio Robles
Stefan Koch
Ksenia Fraczek
Anis Hadzisalihovic

Initial version

0.9 13/2/2007 Ionannis Antoniades
Ioannis Samoladas
Sulayman K. Sowe
Gregorio Robles
Stefan Koch
Ksenia Fraczek
Anis Hadzisalihovic

Review Version

1.0 15/2/2007 Stefan Koch Final Version
2.0 11/10/2008 Daniel Izquierdo-Cortazar Matrices, tools and metrics

added.

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status Deliverable
Identification

3
 Copyright FLOSSMetrics Consortium

Contents

1 Repositories of FLOSS and Repositories of Repositories 6
1.1 Repositories of FLOSS . 6
1.2 Available Data in FLOSS Repositories 7
1.3 Trends in FLOSS Studies and RoRs 8

2 Versioning Systems 12
2.1 Introduction . 12
2.2 Structure and Function . 12
2.3 Preprocessing: retrieval and parsing 13
2.4 Data treatment and storage 17
2.5 CVS . 18
2.6 Subversion . 19

2.6.1 Subversion Repository Access 19
2.6.2 Comparison between Subversion and CVS 19
2.6.3 Subversion Logs . 20
2.6.4 Subversion Repository Analysis 22

3 Communication Tools - Mailing Lists 23
3.1 Introduction . 23
3.2 Activities in Mailing Lists . 24
3.3 Mining mailing lists for FLOSS development and support . . . 24
3.4 Knowledge Sharing Metrics 29

4 Bug-Tracking Systems 31
4.1 Introduction . 31
4.2 Bug Tracking Systems . 34
4.3 Bugzilla . 35

4.3.1 General description . 35
4.3.2 Features . 35
4.3.3 Description . 36
4.3.4 Options . 37

4

4.3.5 Design . 38
4.3.6 Architecture . 41
4.3.7 Benefits . 41
4.3.8 Usage . 42
4.3.9 Data available . 42
4.3.10 Studies & Retrieval Tools 46

4.4 Source Forge Tracker . 47
4.4.1 Technology . 49
4.4.2 Architecture . 51
4.4.3 Tracker . 51

4.5 GNATS . 53
4.5.1 Architecture . 54
4.5.2 GNATSweb . 57
4.5.3 TkGnats . 57

4.6 PHP Helpdesk . 58
4.7 PHPBugTracker . 59
4.8 Double Choco Latte . 62

A Data Sources 69

B Tools and Metrics 75
B.1 Tools . 75
B.2 Metrics . 76

5

Chapter 1

Repositories of FLOSS and
Repositories of Repositories

1.1 Repositories of FLOSS

Participants in FLOSS project rely on extensive peer collaboration through
the Internet, using project’s mailing lists, de facto versioning systems such
as Concurrent Versions System (CVS) or Subversion (SVN), bug-tracking
systems (BTS) and bug databases (e.g. Bugzilla), Internet Relay Chats
(IRC), discussion forums, etc. These tools not only enable participants to
collaborate in the software development process but also act as repositories
to store the communication activities of the participants1.

With the coming of FLOSS, various portals started to provide hosting ser-
vices for FLOSS projects of all kinds and flavors. Among the largest and most
popular these is SourceForge.net. Other portals such as FreshMeat.net and
Savannah.gnu.org also continue to attract a lot of attention. These portals
are hosts to small and large, successful and unsuccessful projects. Yet, many
portals are also graveyards strewed with abandoned projects. The plethora of
FLOSS projects or applications available throughout the Internet is an indi-
cation of a growing interest in F/OSS and the fact that an increasing number
of skilled programmers are willing to transform their (tacit) knowledge and
skills into tangible products [SIA06].

Many researchers use data obtained from direct access to repositories
such as SourceForge.net [BR05, XGCM05], for example. Despite having
firsthand access to the data source, harvesting data or crawling Source-
Forge.net could be a daunting task for researchers [HC04]. Alternatively,
researchers may use subsidiary meta-data provided in a repository of repos-

1A list of categories and types of repositories can be found at appendix A

6

itories or RoRs such as FLOSSmole [JMC06, HC04]. FLOSSmole (http:
//ossmole.sourceforge.net/) may be described as a repository of repos-
itories (RoRs) or meta-repository of raw data of F/OSS projects hosted at
various portals such as FreshMeat, SourceForge.net, Rubyforge.org, and Ob-
jectweb.org. The opportunities researchers have to obtain data directly from
repositories or reuse data dumps already used by other researchers have, to
a large extent, changed the way we obtain data for quality FLOSS research.
The FLOSSMole interface is shown Figure 1.

Figure 1.1: FLOSSMole interface

1.2 Available Data in FLOSS Repositories

The data available in FLOSS repositories stems for two major sources:

1. Tools offered: Web sites which host F/OSS projects also provide each
project with repositories or tools to enable the collaborative software
development process to proceed. The largest web site which provides
these services to projects and has generated a lot of research interest is
SourceForge.net. The tools offered include versioning systems, mailing
lists or bug tracking systems. These tools are described in their own
sections, as they are a general concept which can be used by any project.

7

http://ossmole.sourceforge.net/
http://ossmole.sourceforge.net/

2. Metadata: Most repositories also maintain metadata on the projects
hosted. This can range from simple measures like the number of regis-
tered users, to number of downloads, activity metrics or development
status. These metrics are either reported by the project’s participants,
or computed from other available data (like the number of downloads).
These data can also be accessed and used, but are mostly repository-
specific. Regarding the example of Sourceforge.net, data from this site
has been used to study many aspects of F/OSS; the geographical lo-
cation of F/OSS developers [RGB06], topological analysis of developer
communities [XGCM05], knowledge collaboration across projects and
mailing lists [SIA06], patterns of software development [SDD05], per-
centage distribution of projects, identification of projects with a certain
number of listed developers and bugs [HC04], etc.

1.3 Trends in FLOSS Studies and RoRs

Compared to traditional research practices under proprietary software, F/OSS
development provides researchers with an unprecedented abundance of easily
accessible data for research and analysis. A huge amount of data is available
to study community participation in F/OSS projects [HM05, Mas05] and
developer and user involvement in projects mailing list [SIA06, KSL03].

Although the traditional way of obtaining data for most of these kinds of
research is spidering or crawling of SourceForge using scripts (Perl, Python),
participant observation, personal interviews or a combination of more than
one approach have been used. Instead of direct access to the SourceForge
repository, researchers may benefit from reusing data obtained from Source-
Forge. The University of Notre Dame maintains a data dump from Source-
Forge [BR05] and other researchers may request and reuse the data in their
studies [RGB06]. In another study [VTG+06], reused data from [HC04] to
study the self-organizing patterns in wasp and F/OSS communities.

Research Difficulties

It is becoming increasingly evident that collecting and analyzing F/OSS data
has become a problem of abundance and reliability in terms of storage, shar-
ing, aggregation, and filtering [CO006]. Some of the problems researchers
may face in obtaining and using data in their research can be summarize
thus:

• Convergence of data: There is no standardized way of defining or a
naming convention for variables in a repository. This may pose prob-

8

lems for researchers when it comes to harmonizing data across different
repositories.

• Without Notice!: The data structure of a repository is held in a
back-tier (database). And because many researchers just interact with
the front-end of the repository, researchers can face a daunting task
when a site or a repository maintainer changes the structure of the
data or schema [HC04].

• Confidentiality: Due to the sensitive nature of some aspects of the
data (e.g. private emails), some projects might be reluctant to release
some of their data at a time when the researcher actually needs it.

• A friend of a friend (FOAF): A researcher not having direct access
to the data he needs for his research may send a request to the project,
either through mailing lists or to the repository maintainer. Experience
shows that sometimes processing such a request is like waiting for rain
in the desert. In this case, knowing someone who has obtained the data
the research wants or knowing some members of the core team helps.

Possible Solutions

These difficulties significantly impede F/OSS research. As a result, many
researchers see the need for the establishment and use of Repositories of
Repositories or RoRs. The whole concept of RoRs is an attempt to pull data
from many and varied repositories and bring that data under one umbrella
so that researchers can have easy access to data, reports, tools, and scripts
used in F/OSS research. As [HC04] noted in their schematic analysis, current
F/OSS research is non-cyclical and non-collaborative. It is ’one-way traffic’.
Once researchers obtain, analyze and publish their data, the products of
their research is never put back to the community from which they obtained
their data. Existing structures of software repositories do little to ameliorate
this situation. The aim of RoRs should be to close this loop by encouraging
researchers to contribute their data and any scripts and tools they used
in their research to the RoRs, from which they obtained the original data.
Our view of how the RoRs concept should work is illustrated in Figure 2.
From the diagram, note that there is a continuous feedback between the
research community and the RoRs. The first kind of RoRs available to
researchers is FLOSSmole. For a detailed description of the purpose, design,
and requirements of Flossmole, see [HC04]. Another RoRs in progress is
the EU funded FLOSSMetrics (http://www.flossmetrics.org/) project.
FLOSSMetrics or Free/Libre Open Source Software Metrics project aims to

9

http://www.flossmetrics.org/

Figure 1.2: Conceptual Framework of RoRs

construct, publish and analyze a large scale database with information and
metrics about F/OSS development. Using existing methodologies and tools
already developed the project will house data coming from several thousands
of software projects. The project will also provide a public platform for
validation and industrial exploitation of results. Some of the targets of the
project are summarized.

• Identify, evaluate sources of data, and develop a database structure.

• Build and maintain an updated empirical database.

• Disseminate the results, including data, methods and software.

The roadmap of the project is as shown in Figure 3.
The project will work with other projects such as FLOSSmole, the Soft-

ware Quality Observatory for Open Source Software or SQO-OSS (http:
//www.sqo-oss.eu/) and QUALity of Open Source Software or QUALOSS

10

http://www.sqo-oss.eu/
http://www.sqo-oss.eu/

Figure 1.3: FLOSSMetrics Project’s Roadmap. M=months

(http://www.qualoss.org/). However, the targeted studies of FLOSSMet-
rics are clearly different from those in QUALOSS and SQOOSS. Thus, it
is becoming increasing feasible to use data from RoRs for quality F/OSS
research.

11

http://www.qualoss.org/

Chapter 2

Versioning Systems

2.1 Introduction

Versioning systems are used to manage file versions in a software development
project. Thus they allow to track changes and past states of a software
project. So, obtaining the current and any past state of the code is made
possible by the use of a versioning system. This allows to make source code
analysis in a longitudinal manner and to extract facts on the evolution of a
software project.

But beyond this, versioning systems store a set of meta-data of the
changes. These meta-data can be tracked and analyzed. This information
is usually related to the interactions that occur among developers and the
versioning systems. In general the information is only related to actions
that comprehend write access while reading (downloading the sources) or
obtaining other information (diffs, among others) cannot be tracked in that
way.

In the following sections we are going to present a generalised framework
for versioning systems (repositories) analysis. In our presentation we are
going to use CVS as an example, but the same methodology is true for other
versioning systems.

2.2 Structure and Function

By means of studying a CVS repository, any interaction - also called commit
- a commiter1 does with the central versioning system repository is logged
with following data associated: commiter name, date, file, revision number,

1A commiter is a person who has write access to the repository and does a commit -
an interaction - with it at a given time.

12

lines added, lines removed and an explanatory comment introduced by the
commiter. There is some file-specific information that can also be extracted,
as for instance if the file has been removed2. On the other hand, the human-
inserted comment can also be parsed in order to see if the commit corresponds
to an external contribution or even to an automated script.

Basically all tools that analyze CVS repositories consist of three main
steps, preprocessing, storage and post-processing, but they can be subdivided
into several more.

2.3 Preprocessing: retrieval and parsing

Preprocessing includes downloading the sources from the CVS repository of
the project in study. Afterwards, aggregated modules3 have to be removed
to avoid counting commits several times. Once this is done, the logs are
retrieved and parsed to transform the information contained in log format
into a more structured format (SQL for databases or XML for data exchange).

Besides the information for every commit, other data obtained from the
parsing requires some attention. Although commiters seldom change their
username, sometimes this happens, so the various usernames have to be
merged into a unique one. For instance, in the KDE project commiters
usually get a CVS account prior to a kde.org e-mail address. If a developer
is afterwards assigned an e-mail address the username of e-mail and CVS
have to be identical for organizational and practical reasons. If the username
in the e-mail address is different from the CVS username, CVSAnalY syncs
with the former one and the actions done with both usernames are considered
as done by a unique developer.

The following is a CVS log excerpt for the AUTHORS file of the KDevelop
project4. It gives the last 6 revisions (from revision 1.45 to 1.49) done during
the last months of the year 2003 until mid-2004.

[...]

RCS file: /mirrors/kde//kdevelop/AUTHORS,v

Working file: /mirrors/kde//kdevelop/AUTHORS

2In a versioning system there is actually no file deletion. In the case of CVS, files that
are not required anymore are stored in the Attic and may be called back anytime in future.

3 Aggregated modules are modules that are shared between other modules. Such
modules generally include system-wide administration and scripts. This information is
kept in the CVSROOT/modules file.

4KDevelop is an IDE (Integrated Development Environment) for KDE. More informa-
tion can be obtained from http://kdevelop.org/.

13

head: 1.49

branch:

locks: strict

access list:

keyword substitution: kv

total revisions: 103; selected revisions: 103

description:

revision 1.49

date: 2004/06/21 18:57:13; author: rgruber; state: Exp; lines: +4 -0

Added self

revision 1.48

date: 2004/02/24 14:42:59; author: dagerbo; state: Exp; lines: +5 -1

Added self :)

revision 1.47

date: 2004/02/15 22:40:33; author: aclu; state: Exp; lines: +3 -3

Some more credits update.

revision 1.46

date: 2004/02/15 22:02:33; author: geiseri; state: Exp; lines: +6 -0

I guess I need to accept the blame for these things...

revision 1.45

date: 2003/11/01 11:47:30; author: dhaumann; state: Exp; lines: +4 -1

branches: 1.45.2;

KTabWidget -> KDevTabWidget,

added author.

[...]

While being parsed each file can be matched for its type. This can be
done by several means: the easiest way is to look at its extension, but also
common file names or the content can be inspected. This separation may
help in the identification of different contributor groups that work on the
software, so besides source code files the following file types may also be
considered: documentation (including web pages), images, translation (gen-
erally internationalization and localization), user interface and sound files.
If we only consider the information that appears in the CVS logs, then the
possibility of looking at the content of the files does not exist, so only file

14

names and file extensions can be taken into account.
CVS also has some peculiarities when introducing contents for the first

time (this action is called initial check-in). The initial version (with version
number 1.1.1.1) is not considered in our computation as it is the same as the
second one (which has version number 1.1). The number of aggregated and
removed lines in CVS are computed from this initial version. This means
that the first commit (the initial check-in) logs as if 0 lines were added. This
does not correspond to reality. In order to obtain the actual number of LOCs
in the first version we can count the LOCs by means of the UNIX wc tool of
the latest version, subtracting the added lines and adding the removed lines
of all the other commits.

Comments attached to commits are usually forwarded to a mailing list
so that developers keep track of the latest changes in CVS. Some projects
have established some conventions so that certain commits do not produce a
message to the mailing list. This happens when those commits are supposed
to not require any notification to the rest of the development team. A good
example of the pertinent use of silent commits comes from the existence of
bots that do several tasks automatically.

In any case, such conventions are not limited to non-human bots, as
human commiters usually may also use them. In a large community, we can
argue that silent commits can be considered as not contributory (i.e. changes
to the head of the files, for instance a change in the license or the year in
the copyright notice, or moving many files from one location to another).
Therefore, a flag for such commits can be set in order to compute them
separately or leave them out completely in our analysis.

For instance, the developers of the KDE project mark such commits with
the comment CVS SILENT as it can be seen from following log excerpt ex-
tracted from the kdevelop scripting.desktop file of the KDevelop CVS mod-
ule. In this case it is due to a change to a desktop file, a file type that is
related to the user interface. Being this change not considered interesting for
other developers to know about, the author of this commit decided to make
this commit silently.

[...]

RCS file: /mirrors/kde//kdevelop/kdevelop_scripting.desktop,v

Working file: /mirrors/kde//kdevelop/kdevelop_scripting.desktop

head: 1.24

branch:

locks: strict

access list:

15

keyword substitution: kv

total revisions: 30; selected revisions: 30

description:

revision 1.24

date: 2005/03/28 03:29:25; author: scripty; state: Exp; lines: +2 -2

CVS_SILENT made messages (.desktop file)

revision 1.23

date: 2005/03/27 04:05:51; author: scripty; state: Exp; lines: +4 -0

CVS_SILENT made messages (.desktop file)

[...]

Write access to the versioning system is not given to anyone. Usually
this privilege is granted only to those contributors who have reached a com-
promise with the project and the project’s goals. But external contributions
-commonly called patches, that may contain bug fixes as well as implementa-
tion of new functionality- from people outside the ones who have write access
(commiters) are always welcome.

It is a widely accepted practice to mark an external contribution with
an authorship attribution when committing it. Thus, certain heuristics can
be constructed to find and mark commits due to such contributions. The
heuristics that can be set up are based on the appearance of two circum-
stances: keywords such as patch (or patches in its plural form) together with
a preposition (from, by, of, and other) or an e-mail address or an indication
that the code had been attached to a bug fix in the bug-tracking system.
The regular expressions that are widely in use are following:

[1] patch(es)?\s?.* from

[2] patch(es)?\s?.* by

[3] patch(es)?\s.*@

[4] @.* patch(es)?

[5] ’s.* patch(es)?

[6] s’ .* patch(es)?

[7] patch(es)? of

[8] <.* [Aa][Tt] .*>

[9] attached to #

As an example, the following slightly modified excerpt taken from the
kdevelop.m4.in file from the KDevelop module in the KDE CVS repository

16

shows a patch applied by a commiter with username dymo that was submit-
ted originally by Willem Boschman:

[...]

revision 1.39

date: 2004/06/11 17:07:57; author: dymo; state: Exp; lines: +3 -3

Applied patch from Willem Boschman -

fix builddir != srcdir configuration problem.

[...]

All these efforts have in common that they perform text-based analysis of
the comments attached by commiters to the changes they perform. The range
of possibilities in this sense is very ample. For instance, Mockus et al. tried to
identify the reasons for changes (classifying changes as adaptative, perfective
or corrective) in the software using text-analysis techniques [MV00].

2.4 Data treatment and storage

Once the logs have been parsed and transformed into a more structured for-
mat, some summarizing and database optimization information is computed
and data is stored into a database.

Usually the output of the previous parsing consists of a single database
table with an entry per commit. This means that information is stored in a
raw form, containing the table possibly millions of entries depending on the
size and age of a project5. Information is hence in a raw format and in an
inconvenient way if we consider getting statistical information for developers
and projects from it.

A first step in this direction is to make use of normalization techniques for
the data. In this sense, commiters are assigned a unique numerical identifica-
tion and if further granularity is needed, procedures have been implemented
to do the same at the directory and file level. For the sake of optimization
this can be introduced during the parsing phase so additional queries have
not to be performed. The next step is to gather statistical information on
both commiters and modules. These additional tables will give detail on the

5For instance, as of April 2005, over 7 million commits to the CVS of the KDE project
have been computed. The number of commits for other projects such as GNOME or
Apache is also in the order of magnitude of millions of commits.

17

interactions by contributors or to modules, which is one of the most frequent
information that is asked.

Additional information that makes longitudinal analysis possible is the
evolution of contributions by developers and to modules. Hence, the same
statistical queries that have been obtained for commiters and modules for
the summarizing tables can be obtained in a monthly or weekly basis since
the date the repository was set up.

On the other hand, unfortunately CVS does not keep track of which files
have been committed at the same time. The absence of this concept in CVS
may bring some distortion into our analysis. There are several sliding win-
dow algorithm proposed by German [Ger04] and Zimmermann et al. [ZW04]
that identify atomic commits (also known as modification records or transac-
tions) by grouping commits from the CVS logs that have been done (almost)
simultaneously. This algorithm considers that commits performed by the
same commiter in a given time interval (usually in the range of seconds to
minutes) can be considered as an atomic commit. If the time window is fixed,
the amount of time that is considered from the first commit to the last one is
a constant value. For a sliding time window, the time interval is not constant;
the time window is restarted for every new commit that belongs to the same
transaction until no new commit occurs in the (new) time slot [ZW04].

The post-process may be composed of routines that interact with the
database, analyze statistically its information, compute several inequality
and concentration indexes and generate graphs for the evolution over time
for a couple of interesting parameters (commits, commiters, LOCs...).

For instance, results of a CVS analysis can be obtained through a publicly
accessible web interface that allows easy inspection of the whole repository
(general results), a single module or by commiters. Therefore results are
available for remote analysis and interpretation by project participants and
other stakeholders.

2.5 CVS

CVS, Concurrent Versioning System, has historically been the most used
versioning system used in libre software projects. For instance, more than
10,000 projects hosted at SourceForge are reported to use it in 2003 [HS03],
and the 11 largest projects in Debian 2.2 [GBPdlHQ+01] use versioning sys-
tems (all of them CVS except for Linux that at that time used Bitkeeper, a
proprietary versioning solution6). As CVS has been used as an example in

6As of June 2005, the Linux project moved to another versioning tool developed by the
Linux developers.

18

the treatment above, no additional analysis of this tool is given here.

2.6 Subversion

Subversion7 is an open source application used for revision control. Sub-
version is designed specifically to be a modern replacement for CVS. Many
open source projects are now moving to subversion to benefit from its modern
design and features.

2.6.1 Subversion Repository Access

Subversion repositories can be accessed by the following means:

• Local file system or network file system, accessed by client directly.

• WebDAVDeltaV (over http or https) using the mod dav svn module
for Apache 2.

• Custom svn protocol, either plain text or over SSH.

All three means can be used for all subversion operations.

2.6.2 Comparison between Subversion and CVS

Although the majority of open source projects use CVS as their primary
versioning control system, there is a continuous switch to subversion. Ma-
jor repository hosting providers, such as Sourceforge.net, are replacing their
versioning systems with subversion. The table below presents a comparison
between CVS and Subversion.

CVS Subversion
Atomic Commits Commits are not atomic Commits are atomic
Rename support No Yes
Copy of files to a different location No Yes
Remote Repository Replication No Yes (indirectly)
Repository permissions Limited

The command set that subversion uses is very similar to that of CVS, for
example in order to update a local repository, with CVS the command is cvs
update while with subversion it is svn update.

7http://subversion.tigris.org

19

2.6.3 Subversion Logs

With the command svn log someone can see the log messages for all files
and directories inside of (and including) the current working directory of
your working copy. With the option -v (svn log -v) svn will also print all
affected paths with each log message. For example:

r26 | robflynn | 2000-03-23 14:44:52 +0200 (, 23 2000) | 2 lines

Changed paths:

M /trunk/gaim/src/util.c

One of the previous patches didnt go in correctly. Its fixed now.

--

r25 | robflynn | 2000-03-23 13:12:23 +0200 (, 23 2000) | 2 lines

Changed paths:

M /trunk/gaim/src/gnome_applet_mgr.c

Another patch from Eric.

--

r24 | robflynn | 2000-03-23 12:18:02 +0200 (, 23 2000) | 2 lines

Changed paths:

M /trunk/gaim/ChangeLog

M /trunk/gaim/src/gaimrc.c

Fixed problem with away messages.

--

r23 | robflynn | 2000-03-23 11:53:31 +0200 (, 23 2000) | 2 lines

Changed paths:

M /trunk/gaim/ChangeLog

M /trunk/gaim/src/server.c

Small fix to the lagometer

--

Apart from the text format, svn offers an option to extract logs in xml
format, allowing for easier analysis (svn --xml -v log). For example the
previous entries are transformed into the following xml format.

<logentry

20

revision="25">

<author>robflynn</author>

<date>2000-03-23T11:12:23.000000Z</date>

<paths>

<path

action="M">/trunk/gaim/src/gnome_applet_mgr.c</path>

</paths>

<msg>Another patch from Eric.

</msg>

</logentry>

<logentry

revision="24">

<author>robflynn</author>

<date>2000-03-23T10:18:02.000000Z</date>

<paths>

<path

action="M">/trunk/gaim/ChangeLog</path>

<path

action="M">/trunk/gaim/src/gaimrc.c</path>

</paths>

<msg>Fixed problem with away messages.

</msg>

</logentry>

<logentry

revision="23">

<author>robflynn</author>

<date>2000-03-23T09:53:31.000000Z</date>

<paths>

<path

action="M">/trunk/gaim/ChangeLog</path>

<path

action="M">/trunk/gaim/src/server.c</path>

</paths>

<msg>Small fix to the lagometer

</msg>

</logentry>

The svn blame command shows author and revision information in-line
for the specified files or URLs. Each line of text is annotated at the beginning
with the author (username) and the revision number for the last change to
that line.

21

8749 faceprint

9474 lschiere if (imhtml->edit.link)

9474 lschiere gtk_imhtml_toggle_link(imhtml, NULL);

9474 lschiere

9451 lschiere

gtk_text_buffer_remove_all_tags(imhtml->text_buffer, iter, iter);

9430 seanegan

8749 faceprint }

8749 faceprint

8749 faceprint char *gtk_imhtml_get_markup(GtkIMHtml *imhtml)

8749 faceprint {

8749 faceprint GtkTextIter start, end;

8749 faceprint

8749 faceprint

gtk_text_buffer_get_start_iter(imhtml->text_buffer, &start);

8749 faceprint

gtk_text_buffer_get_end_iter(imhtml->text_buffer, &end);

8749 faceprint return gtk_imhtml_get_markup_range(imhtml,

&start, &end);

8749 faceprint }

8749 faceprint

2.6.4 Subversion Repository Analysis

The structure of a subversion analysis tool is not different from that of a
CVS analysis tool. Both tools use the same methodology on keeping track
of changes, they differ in some technicalities with the versioning mechanism.
So, the way we analyse a subversion repository and the methodology we use
is the same as that of the CVS case. Of course parts such as retrieval and
parsing are different in the command they use, but the rest are the same.
All algorithms and considerations that are taken into account for the CVS
analysis are applied to the analysis of subversion repositories.

22

Chapter 3

Communication Tools - Mailing
Lists

3.1 Introduction

The FLOSS windfall is such that there is increased motivation to under-
stand how software developers and users communicate and the overall na-
ture of community participation in FLOSS projects. Substantial research is
proceeding with focus on software repositories such as mailing lists to study
developer communities with the ultimate aim to increase our understanding
of core software development activities. Mundane project activities which
are not explicit in most developer lists have also received attention [SIA06],
[LvH03]. Many researchers focus on mailing lists in conjunction with other
software repositories [KSL03, Gho04, LvH03, HK05, RBM03]. These studies
provided great insight into the collaborative software development process
that characterizes FLOSS. Community studies in mailing lists are important
because on one hand, one major technical infrastructure FLOSS projects re-
quire is mailing lists. On the other hand, FLOSS projects are symbiotic cogni-
tive systems where ongoing interactions among project participants generate
valuable software knowledge - a collection of shared and publicly reusable
knowledge - that is worth archiving [SIA06]. One form of knowledge reposi-
tory where archiving of public knowledge takes place is the project’s mailing
list. Some other source code repositories such as bug-tracking and versioning
systems are available to facilitate the software development and coordination
process.

23

3.2 Activities in Mailing Lists

Lists are active and complex living repositories of public discussions among
FLOSS participants on issues relating to project development and software
use. They contain what [Ger03] called ’software trails’ - pieces left behind by
the contributors of a software project and are very important in educating
future developers and non-developers [SIA06] on the characteristics and evo-
lution of the project and software. Generally, a project will host many lists,
each addressing a specifically area of need. For example, software develop-
ers will consult developer lists, participants needing help on documentation
will seek links from lists associated with project documentation, beginners
or newbies will confer with mentors’ lists, etc. Fundamentally, two forms of
activities are addressed in lists;

• Core activities typified by developing, debugging, and improving
software. Developer mailing lists are usually the avenues for such ac-
tivities.

• Mundane activities [MFH02, LvH03, KSL03]. Documentation, test-
ing, localization, and field support exemplifies these activities and they
take place predominately in non-developer lists [SIA06].

However, expert software developers, project and package maintainers
take part in mundane activities in non-developer mailing lists. They interact
with participants and help answer questions others posted. Sometimes they
encounter useful issues which help them to further plan and improve code
or overall software quality and functionality. In addition, although mundane
activities display a low level of innovativeness, they are fundamental for the
adoption of FLOSS.

3.3 Mining mailing lists for FLOSS develop-

ment and support

Compared to the traditional way of developing proprietary software, FLOSS
development has provided researchers with an unprecedented abundance of
easily accessible data for research and analysis. It is now possible for re-
searchers to obtain large sets of data for analysis or to carry out what
[Gho04] referred to as ’Internet archaeology’ in FLOSS development. How-
ever, [CO006] remarked that collecting and analyzing FLOSS data has be-
come a problem of abundance and reliability in terms of storage, sharing, ag-
gregation, and filtering of the data. FLOSS projects employ different kinds of

24

repositories for software development and collaboration. From these reposi-
tories community activities can be analyzed and studied. The figure below
shows a methodology by which community participation in mailing lists may
be studied. The methodology shows FLOSS project selection, choice of soft-
ware repository and lists to analyze, data extraction schema, and data clean-
ing procedure used to extract results for analyzing community participation
in developer and non-developer mailing lists.

Mailing lists participants interact by exchanging email messages. A par-
ticipant posts a message to a list and may get a reply from another partic-
ipant. This kind of interaction represents a cycle where posters are contin-
uously internalizing and externalizing knowledge into the mailing lists. In
any project’s mailing list, these posters could assume the role of knowledge
seekers and/or knowledge providers [SIA06]. The posting and replying ac-
tivities of the participants are two variables that can be compared, measured
and quantified. The affiliation an individual participation has with others as
a result of the email messages they exchange within the same list or across
lists in different projects could be mapped and visualized using Social Net-
work Analyzes (SNA). For the construction of such an affiliation network or
’mailing list network’ see [SIA06], pp. 130-131.

Mailing lists participants’ may assume one or both of the following roles
[SSA07]:

1. As a Knowledge Provider. A knowledge provider in FLOSS projects as
an expert software developer who helps project participants on various
issues related to software development and use.

2. As a Knowledge Seeker. Any list participant who seeks assistance on
issues related to software development and use (e.g. how to compile
code, run an application, configuration details, resolve package depen-
dencies, documentation, etc) can be described as a knowledge seeker.

In FLOSS projects, developers are themselves users of the software. Most
mailing lists are open to all participants so that users can ask questions,
and developers can post patches for others to review. Sometimes a software
developer or module maintainer my assume the role of a knowledge seeker by
posting to lists, asking questions relating to software configuration, package
dependency issues, bugs, etc. At the same time, an ordinary software user
may assume the role of a knowledge provider by answering questions others
ask in the lists. Roles are not assigned in FLOSS projects, almost every
activity is voluntary. Depending on ones expertise, anyone can assume any
role in the project. Thus, the distinction between a knowledge seeker and a

25

Figure 3.1: Methodological Outline to Extract Data from Mailing Lists
Archives. Modified from [SIA06] (p.1027).

26

knowledge provider depends only on the unanticipated role of the individual
at a particular moment in time.

Knowledge sharing between knowledge seekers and knowledge providers
in FLOSS projects a synergistic process - ”you get more out than you put
in.” If a mailing list participant shares his ideas or a way of installing or
configuring particular software with another person, then just the act of
putting his idea into words will help him shape and improve that idea. If
he enters into a dialogue with the other mailing list participants, then he
may benefit from their knowledge, from their unique way of doing things
and improve his ideas further. Each list participant enters into a ’conver-
sation’ with other participants in the list. When two or more participants
exchange email messages, they are said to share their knowledge. Knowledge
sharing in FLOSS projects is all about helping each other and collaboration.
The FLOSS development context is a symbiotic cognitive system, where the
community learns from its participants, and each individual learns from the
community ([SKS05], p.301). The benefit derived from knowledge sharing is
that participants learn from each other ([SKS05], p.298), and the result of
their interaction is archived in the project’s mailing from which subsequent
participants can learn.

Ongoing interactions between project participants are a means of acquir-
ing valuable software knowledge that is worth archiving. Mailing lists play
a vital role in connecting knowledge seekers who are searching for knowl-
edge with knowledge providers who already posses this knowledge. Through
mailing lists, software users can ask questions and get answers. Software de-
velopers can discuss code development; package maintainers can disseminate
product updates, get feedbacks, and discuss bugs and software dependen-
cies. The Knowledge Sharing Model (KSM) in Figure 1 shows how mailing
list participants share their knowledge by exchanging one or more email mes-
sages. Their knowledge and concepts are archived into the project’s mailing
list or Knowledge Base [SKS05]. This is a collection of shared and publicly
available artifact known as reusable or public knowledge. Other repositories
include Concurrent Versions Systems (CVS), Frequently Asked Questions
(FAQs), project web sites and bug databases, etc. Knowledge seekers and/or
knowledge providers transfer their knowledge, expertise, or know-how to the
mailing list by means of a process called externalization. The process of ac-
quiring knowledge from the mailing list and filtering of that knowledge to
provide greater relevance to the acquirer is called internalization [SSA07].

As directions of the arrows in Figure 1 show, a potential knowledge seeker
composes a message by posting or externalizing (A) it to the list. A knowl-
edge provider may internalize (B) that knowledge and reply to the post (C).
For example, a potential knowledge seeker confronts an unfamiliar concept

27

Figure 3.2: Knowledge Sharing Model.

(or bug) in the use of an application (e.g. OpenOffice) and decides to seek
help form the project’s mailing list. There are two ways to look at this
scenario in the KSM:

• If the concept has been encountered before, it will be captured
and stored in the knowledge base in the form of threaded discussions,
which represents software knowledge resulting from interaction between
list participants. This knowledge is externalized into the project’s mail-
ing list, indexed and archived, for subsequent knowledge seekers and
knowledge providers to utilize by internalization. The knowledge seeker
then directly consults the list.

1. Knowledge seeker internalizes knowledge from knowledge base:
(KB) =⇒ (D).
According to this model, software experts or knowledge providers
are also continuously browsing the mailing list to seek knowledge.

2. Knowledge provider internalizes knowledge from knowledge base:
(KB) =⇒ (B).
The source of knowledge in both cases is the mailing list.

• If the concept has not been encountered, the problem solving part

28

of the model comes into play; the knowledge seeker’s problem has is not
been addressed in the mailing list before. It defines routes to be taken if
a proposed solution fails, and how to respond if necessary information
is absent [SSA07]. The knowledge seeker identifies the appropriate list,
post his question, and exchange ideas with list participants.

1. Knowledge seeker posts his question to the list: (A) =⇒ (KB).

2. Knowledge provider may browse and reply to the list for every
participant to benefit: (C) =⇒ (KB).

3. Knowledge seeker internalizes knowledge from knowledge base:
(KB) =⇒ (D).

Alternatively, he may know a participant with expertise in the area he
is interested in and exchange direct emails with that person (shown in
dotted lines), with or without copies being posted to the list.

3.4 Knowledge Sharing Metrics

In the FLOSS context, participant must interact with the entities (e.g. web-
sites, forums, to-do lists, etc) in which explicit knowledge is contained to
have understanding of what the project is all about. However, it does not
follow that another project participant can comprehend and correctly value
the knowledge due to differences in programming capabilities or experience
in the project [SSA07]. Thus, the process of measuring knowledge is com-
plicated by its intangible nature, especially measuring tacit knowledge. But
when tacit knowledge is transformed into explicit knowledge through so-
cialization or interaction [49] and shared by members of an organization or
project, an attempt can be made to measures how much knowledge is being
shared. Koh and Kim, [KK04], suggested a way we can quantify the level of
knowledge sharing in virtual communities. Similarly, we can provide quan-
tifiable measures of knowledge sharing activities in FLOSS projects’ mailing
lists by analyzing substantial email exchanges between list participants. We
accomplish this in our KSM model by

1. counting the total number of posts externalized to the list. That is,
email messages potential knowledge seekers posted. This quantity can
be represented by the nposts variable,

2. counting the total number of replies made by potential knowledge
providers to questions posted to the lists. This value quantity can
be represented by the nreplies variable.

29

These two values will provide us a simple measure of the level of knowledge
sharing in the lists.

30

Chapter 4

Bug-Tracking Systems

4.1 Introduction

It’s hard to tell precisely how well the error–reporting system
is working, but this seems to be a bug weapon that has landed a
permanent spot in Microsoft’s arsenal. [Deu04]

Bug – Tracking is a method which shows us whether the process is er-
roneous or not. It is found in different scientific methods like operational
management, operational research, business intelligence and software.
It is used in different sectors like:

• Software

– development

– maintenance

– evolution

– requirements analysis

– testing

• Project Management

– employees processing

– workgroups

– implementation

– using the model Computation–, Artificial– und Knowledge–Intelligence

∗ theoretical terms and definitions in the model checking logic

31

∗ data – warehouse, data – mining

∗ neural networks

Definition 1 Bug tracking is an application for helping the software pro-
grammers and normal users in searching bugs.

After using bug tracking the system comes with clearly, precise, identifi-
able and establishable outputs without bugs.

Definition 2 Bug is a name for a program error e.g. it is an unknown
intruder.

Historically seen, the first bug found was on paper.

Figure 4.1: First Computer Bug [Wik06a]

Definition 3 Bug–tracking helps the software developers in knowing what is
the error, resolving it, and learning from it. [IEE06]

Definition 4 Bug–tracking systems aren’t a panacea for what ails software–
they’re useful for collecting aggregate data on how often certain kinds of faults
occur. [Deu04]

32

The bug tracking appearance in the business world and processes vary often.
Mostly, different software applications are used because of optimisation and
speed. General software development with bug–tracking system in the be-
haviour life cycle can be seen in the following figure. This system will develop
as long as the software continues.
Software –analysis and –architecture using a bug tracking is for any stake-

Figure 4.2: Relationship between Software & Bug–Tracking System

holder the core for checking tasks. It is helpful in some areas as for exam-
ple management implementation, programming and re-documentation where
it indicates the attitude between evolution– and maintenance– process and
specification. Requirement analysis shows the minimum requirements with-
out bug and can continue with analyzing software project. Software reuse
with bug tracking is always applicable. For fast and next smaller projects
as the case may be subprojects relavant to examination whether the bug
is present. It makes for the user or stakeholders the quick way to identify
them. We do not know whether the software incorrect is or not, so the best

33

method is to apply research with bug–tracking during execution of building
the platform e.g. test tracking and the end of the platform application.

Relevant notes for bug tracking are [Ebe05]:

• Before deciding to install a bug–tracking program on your system, try
it out on the Internet.

• The correct input of each bug is as important or even more important
than bug–tracking system itself.

• Build your project structure and modules well to make it easier for the
user and the programmer to identify bugs.

• It is more positive and realistic to think about issues rather than just
bugs. If you talk only about bugs, your external viewers will count
enhancements as bugs.

• Do not overuse the ”send mail to programmer” feature to input bugs
and issues.

• Decide whether you want to use your application as a bug–tracking
system, a task registry, or both.

• Show your lead users how to introduce effectice bug descriptions so that
they can debug successfully and explain them well to other users.

• Use the system often to check for new issue reports; otherwise, your
customers would not use it. Reply quickly to customer so that they
continue to use the system instead of making a phone call to report a
bug.

• Use the tool to get information, not to keep tabs on your workers
behavoir; otherwise, they would not input true data.

4.2 Bug Tracking Systems

Well-known Features are: [Cod06]

• Search by project, assigned person, priority, status

• Sorting by any of the columns (Bug name, project, priority, assigned
Person, status)

• Login authentication

• Administration of users

34

4.3 Bugzilla

We will describe the structure of the Bugzilla. Bugzilla is implemented soft-
ware for server and client architecture, particularly for software and testing
development. Detailed information can be found under [Moz06].

4.3.1 General description

Bugzilla is the leading open–source/free software bug tracking system, with
high–profile installations at Mozilla, Gnome, Red Hat, and Nasa, among oth-
ers.
The availablility of Bugzilla is under software licence as Mozilla project and
projects under same integrated the Mozilla Published Licence (MPL), the
General Public Licence (GNU) and the Lesser General Public Licence (LGPL).
It can be used in different ranges of software applications. It can be used
for normal user–to–user (UTU) for errors or in user–to–peer (UTP) software
development for reuse, recovery, advancement and evolution of the project.
Bugzilla can be used with Web interfaces.

Why actually the name Bugzilla? It gives only the error report messages
as integrated structure therefore the name for Bug. It is in the Mozilla –
Web Browser integrated, therefore named Zilla.

4.3.2 Features

The features are:

• request system

• comprehensive set of fields

• attachment management

• user wildcard matching

• inter-bug dependencies & time tracking

• a powerful query interface

• generic reporting & -charting

• email notification changes

• power and manual query

35

• multiple authentication methods

• console interfaces to accomplish

• enterprise group support

• localisation

• full–text search

• patch viewer

• comment reply links

• sanity check

4.3.3 Description

If for Bugzilla an information source is identified with error message, it tries
to keep this information. This is stored into a certain data base structure.
Communication e.g. connection between bug report and data base runs in
the Extensible Markup Language (XML) format. Information and bug report
in each case communicate also with XML format. See also the following
figure.
It provides administrative information of software and hardware, mailing
and carbon copy adresses, keywords for bugging, Uniform Resource Locator
(URL) for certain definitions, descriptions and discussions between persons,
error to repair in maintenance process.

36

Figure 4.3: Technology architecture

We will represent functionalities of bug report in the next figure. This
Figure shows typical Bug report message from Mozilla. It shows us the in-
terpolation and then switching to themes tab crashed minefield. Bug report
gives us those message data as Web dialogue. This representation shows us
Bugzilla used with a Web Broser in our case Mozilla. The Figure function-
alities and attributes are give in a later section with detailed description.

4.3.4 Options

Bugzilla does:

1. Track bugs and code changes

2. Communicate with teammates

3. Submit and review patches

4. Manage quality assurance

Bugzilla can help to get a handle on the software development process. Suc-
cessful projects often are the result of successful organization and communi-
cation. Bugzilla is a powerful tool that can help a team to get organized and
communicate effectively.

37

Figure 4.4: Bug–report [Wik06b]

Possible Uses :

• Systems administration

• Deployment management

• Chip design and development problem tracking

• Software and hardware bug tracking

• IT support queues

4.3.5 Design

Bugzilla has potential to become a ticket simple system, task management
tool or project management tool but its developers decided to make Bugzilla
a software defects tracking system. This figure represents a bug life cycle.
It consists of several activity e.g. events, which everyone speaks an inde-
pendent functionality. They are connected with several dependencies, where

38

Figure 4.5: Design exposition [Wik06c]

each dependency describes a role attribute.

The states are:

• Unconfirmed
The bug is not clearly identifiable. It is stored in the data base and
respectively marked. If bug revealed to be in a data base as fixed

39

confirmed and can be accessed at other activities the new, assigned or
resolved, independently of its dependency representations.

• New
New bug is found and identified. New bug from a user with canconfirm
has be assigned and processed. This activity can accept to assigned
state e.g. if the condition is fulfilled or can only be resolved and at the
end marked.

• Assigned
This bug is not yet resolved, but is assigned to the proper person
[Bug06]. It can go from here at the activity New when dependency
Ownership is changed to contend, or to Resolved when Development is
finished with bug.

• Resolved
In this activity resolution is taken.
The resolution field indicates what happened to this bug [Bug06].
Possible resolution are:

– Fixed: Testing for bug into the activities and checked for fixing
the bug.

– Duplicate: Replication of other bugs. If several bugs appear, then
replicate bug requires the bug ID of the duplicating bug.

– Wontfix: The bug will never fixed.

– Worksforme: All attempts at reproducing this bug were futile,
and reading the code produces no clues as to why the described
behavior would occur [Bug06].

– Invalid: The bug has invalid status.

– Moved: The bug is tracked in another bug data base. It can be
removed from another data base.

With the verification Qualification Authority (QA) has the possibility
either if QA not satisfied with the solution at the activity Reopen to
access or if satisfied with QA then mark as verified.

• Reopen
This activity was resolved, but without success. The resolution is not
correct. For example, a Worksforme bug is Reopened when more infor-
mation shows up and the bug is now reproducible [Bug06]. From here
bugs are either marked assigned or resolved [Bug06].

40

• Verified
QA looked for bug and resolution is taken. Bugs remain in this activity
until the product they were reported against actually ships, at which
point they become Closed [Bug06].

• Closed
The bug is dead, the activity is closed. The resolution is finally com-
pleted. If any bug not correctly worked or the resolution at the end
is not completed, then the activity Reopen must be used and the bug
processed again.

The requirements are as follows: It needs to be able to run on open source
tools. Bugzilla development is supposed to work on commercial data bases,
tools and operating systems but it should not happen at the cost of open
source tools. Bugzilla’s speed and ease characterizing implementation is it’s
main advantage. It does not call into the data base often so it does not
impose heavy load to the database when fetching necessary data and what
is also very important it does not generate a Hypertext Markup Language
(HTML) code. It avoids Structured Query Language (SQL) calls and data
types in queries and tables. Data base specific queries and data types are
used when it is possible, thus developers often change existing SQL–Request
calls. Browser agnosticism in HTML and form generation, including cleaning
up the HTML output of Bugzilla, and following all applicable Web Standards.

4.3.6 Architecture

Bugzilla is Web application, so user and/or stakeholder interact only with
HTTP.

4.3.7 Benefits

The advantages are:

• Improved communication

• Increased product quality

• Improved customer satisfaction

• Ensured accountability

• Increased productivity

• Bugzilla can be adapted to multiple situations

41

Figure 4.6: Architecture of Bugzilla

4.3.8 Usage

There is a large number of companies, organizations, and projects which
use Bugzilla. Mozilla.org and the MediaWiki projects use Bugzilla to track
feature requests. Bugs can be submitted by anybody, and can by assigned
to an appropriate developer. A bug can be accompanied by user notes and
bugs examples.

4.3.9 Data available

Bugzilla in it’s database possesses separate information, which for users are
clearly printed out. These information is stored as attributes the nose status
in the data base, where there are by assistance of XML–technology is passed
on to the Web–Browser. Here, we present the bug–attributes e.g bug report:

• id Clear key and identificator for bug report.

• product Describes products for the identified bug-report, e.g the soft-
ware that containt the bug.

• component The description gives the component which with bug is
observed and noticed.

42

• status Describe status of bug report. It describes current condition e.g.
where condition is now. Different status can follow:

Figure 4.7: Behavior representation with attributes and relations

– resolved

– assigned

– new

– closed

– verifies

– uncofirmed

– needinfo

– opened

– reopened

43

• resolution Shows the actions, which is implemented to the bug. This
action can take different status:

– fixed

– wontfixed

– invalid

– bug

– notabug

– obsolete

– incomplete

– notgnome

– notkde

• hardware Hardware system describes where errors could lie.

• os Option for selection that operating system or architecture systems.

• version The version number and description of that product.

• priority Priority for error messages. It can taken on:

– normal

– high

– low

– medium, not high, not low

– immediate

– urgent

• severity How these errors influences the software. The values are:

– critical

– minior

– major

– trivial

– normal

– trivial

– enhancement

44

• targetmilestone Possible target versions. The logs file can be passed
on to the different targets.

• qacontact Contact data by email.

• flags Selection criterion for bug flag.

• url With the use Bug–tracking discovered a bug per on–line e.g. per
Internet.

• statuswhiteboard Explain the current state of the bug.

• keywords Search profile title of profile description for bug.

The factors which for bug report knowledge are necessary:

• iddescription Description the bug with certain inscription.

• reporter Name and e–mail address of the bug reporter.

• e −mail Description the bug status or confirmation idetinfikation by
email. It can contained differently elements of the e–mail:

– From

– Reply–to

– To

– Cc

– Sender

– Received

– Bcc

– Date

– In–reply–to

– Message–Id

• text Feedback, remark, suggestions, descriptions for bug etc.

• buglist All possible recognized bugs designates with name.

• modified Repair, reconstruction and modification bug, so that the
Sofware is fettled.

45

4.3.10 Studies & Retrieval Tools

We will regard two studies

1. Populating a Release History Database from Version Control and Bug
Tracking Systems [FPG03b]

2. Analyzing and Relating Bug Report Data for Feature Tracking [FPG03a]

Populating a Release History Database from Version Control and Bug
Tracking Systems
Version control and bug tracking systems enclose a wide number of historical
information that gives depth into the evolution of a software projekt. This
article describes the population of a Release History Database that connected
version and bug tracking report data and shows some dubious examples with
respect to software evolution analysis. The basic building blocks are an
SQL database and scripts for finding and fittering information from the ver-
sion control systems and the bug report database. This example shows the
Open Source Project Mozilla (OSPM), which uses Concurrent Versions Sys-
tem (CVS)– as version control system and Bugzilla – as bug report database.
This article presents how due to Mozilla we can see the collation beetwen
results and validate. The weak sides of this system make possibilities to only
inadequate of support for a particular analysis of software evolution phase.
This problem introduce into a populating a release history database that
join version data with bug tracking data and to insert the absent data not
to hidden by verion control systems.
The used and tested programs and algorithms are implemented under oper-
ating system Unix. The necessary software and programming languages are:
CVS, ClearCase, SourceSafe, SQL, Mozilla, Bugzilla, XML, C, C++, Java
and Perl.

Analyzing and Relating Bug Report Data for Feature Tracking

This article deals with the closeness of the software features based on
modification and problem report data. Engineers are learning from the past
from the changes stored in versioning and by tracking systems such as CVS
and Bugzilla to determine problem areas and provide for future changes. It
is often not very easy because of the number of the amount of recorded data.
The modification report (MR), and problem report (PR) fold out of bug data
and fix information are the main contribution for the construction of a release
history database (RHDB). Transformation of reports are retrieved from the
systems such as CVS and PR from bug tracking systems such as Bugzilla.

46

Problem reports data disagreement matrix are choosen from the RHDB due
to Java to validate the SQL queries. Unix is the operating system in this
article.
The necessary software and programming languages are: CVS, Bugzilla,
Mozilla, GNU, Perl, C, C++, XML, Java and SQL.

4.4 Source Forge Tracker

SourceForge R© is a software development system. It is integrated with soft-
ware applications, source code and built for the possibility to amalgamate
with other open source software.

Definition 5 SourceForge is proprietary1 software. [Wik06d]

Definition 6 SourceForge is a collaborative software development manage-
ment system. [Wik06f]

SourceForce is deployed by VA Software company. That company is know
as Open Source Technology Group (OSTG). The name VA came of two person
James Vera and his colleague, graduate student Larry Augustin as last first
letters of surnames.

Figure 4.8: Software Tool VA

1Proprietary software is software that has significant restrictions on using and copying
it, usually enforced by a proprietor. [Wik06e]

47

SourceForge e.g. VA Software from collaborative software development
has allowed SourceForge.net (SF.net) to develop diverse software. The mis-
sion of SF.net is to enrich the Open Source Community (OSC) by providing
a centralized place for Open Source (OS) developers to control and manage
OS software development. [Jup06] With general experiences of OSC and of
SourceForge.net found out a new product. This product is called Source-
Forge Enterprise Edition (SEE). SEE is an application of VA–Software. This
came, from the sense of deficiency and repair functionalities of SF.net. It
retains the effectivenes and specter of SF.net. SEE provide enterprise height
reliability, performance, reuse, expandability and maintenance.

Definition 7 SEE is a secure, centralized, enterprise–grade solution for op-
timizing distributed development. [VA 06b]

SF.net places a broad multiplicity of services to the projects like hosting.
The most well–known services of SF.net are:

• Open Source Software (OSS)

• Open Community (OC)

• Web Tools for Community (WTC)

• File Relase System (FRS)

• Donation System (DS)

• Compile Farm (CF)

• CVS Service (CVSS)

• Subversion Service (SS)

• Communication Tools (CT)

• Publicity (Pub)

• Project Web Service (PWB)

48

4.4.1 Technology

We will describe point to point of the optimized distributed development
with SourceForge. These points are (see also the respective figure):

• Central Repository, assured in such a way core to distributed develop-
ment

• Global Development Dashboard

• Collaboration

• Process & Controls

• Visibility & Access

• Project Tools

• Interoperability

Figure 4.9: Features SEE [VA 06a]

Central Repository: All functions and characteristics of the optimizing dis-
tributed development are complete in the middle point.
The features are:

49

• centralizes information and tools for request and respond, control prop-
erty assets

• secure

• supporting maintenance and reuse

• back–up data and facilitate administration

• comprehensive architecture and integration with existing systems

Global Development Dashboard: provides real–time project status and statis-
tics for visibility and insight into projects. It provides detailed reporting on
application, project or tool level.
Collaboration: accessible per Web browser. It provides view into disparate
project and development. Collaborative Development Environment include:
[VA 06c]

1. Collaborative Development Environment

2. Document Manager

3. Discussion Forums, Mailing Lists and News

Process & Controls: impact on secure workflow control and configurable pro-
cess. It provides:

1. Secure access

2. SourceForge collaborative Development Process

3. Automated monitoring, assignment and notifications

4. Traceability/compliance

Visibility & Access: represents the visibility and the application. It provides:

• reusable assets

• documents

• source code

• issue & task details

• discussions & emails

50

• audit logs

Project Tools: provides EtoU, web appliance and used for task tracking, issues
and software development lifecycle. Project tools are:

1. Tracker

2. Task manager

3. File relase system

Interoperability: Supports integration and interoperability with SourceForge
enterprise systems. This Interoperability integrates in two ways: [VA 06d]

• interoperability with used project planning and management tools,
office productivity applications, software configuration management
(SCM) systems, plus integrated development environments (IDEs)

• integration-ready architecture and open API that make it uniquely
well–suited for integration, extensibility and use within complex en-
terprise environments

4.4.2 Architecture

SourceForge gives an integrationable architecture, this was explicitly sketched
for software technology integration, developable, surely and simply to use.

4.4.3 Tracker

Definition 8 Tracker is used in the software development and serves for the
collection and documentation of program errors.

With tracker it is possible to write feature reports. It can be used for eco-
nomic and technical purposes. Options for tracker are:

1. Assignee : tracker item is assigned and choosen. Assignee can be:

• any

• unassigned

2. Status : represents the current situation of a tracker item. There are
five posibbilities to choose from:

• any – Arbitrary status.

51

• open – Status is opened to read.

• closed – Status message is closed.

• deleted – Message or status report is deleted.

• pending – Used, when the person who sent the message waiting
for the reply. After some time the status changes automaticaly
to open. But if the person does not respond to the server for
fortnight, the status becomes deleted.

3. Category : to choose the different category of the tracker. Different
possibilities are:

• any

• 3rdPartyP lugin

• general

• interface

• protocol

4. Group : is selection of the Group with the tracker items. There is any
possibility to select group:

• any

• v1.0

• v2.0

• v2.5

5. Sortby : is choose how do you want to sort the results.

It is also possible and accomplishable that independently any user can define
and use personal tracker item. There are clear pre-defined methods within
SourfeForge where some tracker item is be placed.

The most open source programs hosted on Sourceforge.net use tracker
bug to describe bugs. Tracker bug describes functionalities of software that
are incorrect. It possesses the attributes and methods. Attributes give the
description of tracker bug:

• Request ID

• Summary

• Open Date

52

Figure 4.10: Tracker Item demonstration

• Priority

• Assigned to

• Submitted By

We described methods with tracker. See options of tracker.

4.5 GNATS

GNATS is the GNU Bug Tracking System. It is a software system with either
graphical or command line shell interface.

Definition 9 GNATS is set of tools for tracking bug reports. [Fre06b]

53

Figure 4.11: SourceForce Tracker

GNATS is a bug–tracking program assembly for using and finding bugs. It
keeps all infornation about reported errors in the database and provides tools
for searching, editing, using, repeating and managing this database.
In the view of the GNU project GNATS is a Report Management System
(RMS). GNATS stores all information about the problem reports at a central
site, and enables users to access this site by various means, including e–mail,
www, and a network daemon. [Fre00a]
When any problem comes up during using the software, users enter problem
either via emails to the maintainers or make contact with a GNATS server.

4.5.1 Architecture

The following figure describes communication between server and client.
Server starts with a choice server like inetd or xinted. It has a built–in access
control mechanism based on IP2 addresses and username/password [Fre00c].
If the server is started with xinted3, then create a file /etc/xinetd.d/support

2Internet Protocol
3eXtended INTErnet Daemon

54

Figure 4.12: GNATS Architecture

(see also the respective figure).
Server configuration under inetd4 reads as follows:

Figure 4.13: Xinted Configuration [Fre00d]

4Internet Daemon

55

1. file to call under /etc/inetd.conf and than editing
#port userid program
support stream tcp nowait gnats /usr/local/libexec/gnats/gnatsd gnatsd

2. call file under /etc/servicesa
support 1529/tcp # GNATS

The discussion between server and client is completely by www–interface.
www-Application occurs under GNATS default port 1529. If you want to
run GNATS under another port, then change default port to another port.
Most clients also accept an option or configuration variable to change the
port. Do not forget to tell inetd or xinetd to start gnatsd on the other port.
[Fre00e]
Well-known client distributions from GNATS are:

• Gnatsweb

• TkGnats

• Emacs

• XEmacs

• send–pr

Gnatsweb has a WWW interface, which gives requests to the server.
TkGnats has a Tcl/Tk based interface. It is capable of contacting several
GNAT servers or several problem report databases managed by the same
GNATS server. [Fre00b]
Emacs, XEmacs and send–pr are GNATS mode and have a traditional com-
mand line interface in which any problem report can be sent by e–mail.
Emacs and XEmacs are text editors. XEmacs was founded by GNU Emacs,
but has a different philosophy from Emacs development. It is more open to
experimentation, and offer as first the new features, such as inline images,
variable fonts and terminal coloring.
send–pr is send problem report (SPR) to a central support server site. The
send-pr in NetBSD system is the great user–interface and design for bug no-
tifications to a GNATS database. After completing the formular SPR sends
the report to the GNATS server per e–mail. When it arrives the syntax is
first checked, and then becomes a new problem report (PR) number and cat-
alogue to the GNATS database. The sender receives a statement with the
PR number.

56

4.5.2 GNATSweb

GNATSweb (GNATwww) is a web front-end to gnats, the GNU Problem Report
Management System. It is a CGI5 script which runs on any web server.
GNATwww is similar to wwwgnats. It uses gnatsd, wjich means that the
web server and gnats server do not have to be on the same machine or have
access to the network. GNATwww does not use nquery–pr, it contacts gnatsd
directly.

Figure 4.14: Query Problem Reports [Ope06a]

4.5.3 TkGnats

TkGnats is a graphical frontend for the free bug tracking system GNATS
based on the Tcl/Tk for the GNATS bug management system. It runs on
UNIX and Windows 95/98/NT in difference from GNATS which runs only
on UNIX platforms.

5Common Gateway Interface

57

Figure 4.15: TkGnats–Household Projects [Ope06b]

4.6 PHP Helpdesk

PHP Helpdesk (PHPHD) is an organisation. The licence is GNU GPL. It
is a customer support system written in PHP and using MySQL database
backend. It is a project to create a PHP–based bug–tracking system.

PHPHD was developed because of my need to keep a list of
jobs that were pending. I have tried all sorts of other helpdesk
related tools and there was nothing that I have found that would
handle the problems that I had. It requires PHP, MySQL and a
web server. [PHP06a]

PHPHD is an online helpdesk program for use in organizations with fol-
lowing features:

• Bug tracking

• Insert user/company

• Remove user/company

• Revision user/company

58

• Authorize information

• Identification of job in use

• Closing the job

• Produce request on response time and to identify bugs with each com-
puter.

Figure 4.16: PHP Helpdesk [PHP06b]

This figure shows us how can entered some Project by tracking bug.

4.7 PHPBugTracker

PHPBugTracker (PHPBT) is a web–based bug tracking system. It is similar
to tracking system BugZilla. See also chapter 2.1.
This software helps any development to manage testing and debugging.
If there is more than one development project e.g. web application for which
you can identify a bug, you will be questioned to choose one.
This figure describes a noticed bug. The functionalities are:

59

Figure 4.17: phpBugTracker: Enter Bug Project [php06d]

• home

• add a new bug

• query bugs

• view reports

• create a new account

• read documentation

• admin tools

The methods are:

• status

60

Figure 4.18: PHPBugTracker Bug [php06c]

• resolution

• operative system

• priority

• severity

Adding comments to a bug allows you to provide more detail
about what caused the bug or what the expected behavior was,
but also allow the developer and the user to communicate about
a bug while keeping a history of those notes. Comments that are
added to a bug will be emailed as described previously [php06c].

PHPBT sends email to a certain user, who identifies itself with bug. If a
bug has been submitted and assigned to a developer, and then the developer

61

adds comments to the bug, then those comments will be emailed to the re-
porter but not to the developer. [php06c] Additional people can be added
to receive these change emails by adding them to the CC6 list. To remove
people from the CC list, simply select the people to be removed and submit
the form [php06c]. Create Attachment link adds bugs as attachment files.
Attachments can be viewed from the attachment list.

PHPBT runs under a simple architecture conception. See also the respec-
tive figure. Web–Server (Apache, Tomcat, JBoss etc.) need sto be configured
to run PHP programme and scripts. PHP7 is a programming language with
a similar syntax as Perl, which is used mostly for the dynamic envolment by
web pages or applications of Web. Database runs under MySQL, PostgreSQL
and Oracle. It can run also under other databases only the installation is not
working so simply.

Figure 4.19: PHPBugTracker Architecture

4.8 Double Choco Latte

Definition 10 Double Choco Latte (DCL) is a GNU Enterprise package that
provides basic project management capabilities, time tracking on tasks, call

6Carbon Copy
7Personal Home Page Tools

62

tracking, email notifications, online documents, statistical reports, report en-
gine, and more features either working or being developed/planned. [Fre06a]

DCL is a system for tracking bugs, changes, requests for software, reuse
of project. It can communicate also with several clients, e.g. multiple
Clients(request) and server(respond) communication.

DCL is a project to create a solution for managing some IT
departments including software development and call center ac-
tivity. It has a web interface and will also have a stand-alone
Java client. [Ope06c]

DCL goes into more depth than PHPHD tracking tool, therefore concerns
internal features more deeply:

• the strong investigation for bug

• very good discovery for bug

• runs under Java
TM

technologie

The user can search for bug (see respective figure). User opens graphic
dialogue search menu and starts searching. There are options for searching
the bug:

• New work order

• New project

• New ticket

• Main wiki

• Printer Friendly

User has different methods to select.

• summary

• personnel

• type

• product

• project

63

Figure 4.20: Search menu [Dou06b]

• account

• priority

• severity

• status

• dates

• text

This figure shows the results. Found bug gives detailed description as:

• WON.8

• Sequence

• Responsible

• Product

8Work Order Number

64

Figure 4.21: Search result [Dou06a]

• Status

• Summary

There exist different options to regulate:

• My WOs9

• Add new

• Import

• Activity

• Graph

• Statistics

• Schedule

• Search

9Work orders

65

• Browse

Figure 4.22: Action [Dou06c]

The User tries to use an action. There is selection different action to define
and to regard. In the Work Order there is possibility certain actions to
select. The selected action depends on user. This figure represents action
in the attacker bug identified and found. The dialogue action shows us the
possibilities for using:

• Date

66

• By

• Status

• Action

• Hours

• Version

• Summary

• Description

Functionalities in this figure are:

• Add

• Clear

The action dialogue gives a report of whether the action implemented was
effective or not.

1. Responsible

2. Priority

3. Severity

4. Deadline

5. Product

6. Reported Version

7. Projected Start

8. Actual Start

9. Projected End

10. Actual Hours

11. Opened by

12. Status

13. Last Action on

67

14. Account

15. Contact

16. Phone

17. Description

68

Appendix A

Data Sources

This appendix shows several matrices where each of the potentially exploited
categories of community-related information is subdivided into each of the
possible types of repositories.

Six categories have been defined and for each one, several types of repos-
itories have been identified.

In order to facilitate the comprehension of next tables, each type of repos-
itory has been matched with a color. Three colors have been used, red, yellow
and green. If there are no tools available to extract information from a given
repository, the color is red. Just the opposite represents the green color and
finally, the yellow one indicates that a tool is being developed to extract
information from it.

Most of the repositories show a red color, what means that there is no tool
available to extract data. However, the main forges, like SourceForge, Berlios
or Savannah just provides support for one or two of them. For instance,
focusing on the source code managemente system, CVS or Subversion are
the most used in FLOSS projects. Also, some other distributed source code
managemente systems, like Git, Mercurial or Bazaar, what means that data
can be extracted from most of the aforementioned repository.

Also, around half of the repositories tools is licensed under the GPL, BSD
or any other floss license. Thus, what is presented here is a list of reposi-
tories found for each category, but also the availability of tools to extract
information, at least from the FLOSS world and with FLOSS tools.

Summarizing next figures: figure A.1 shows a list of the several types of
repositories found for source code management systems1. Figure A.2 and
figure A.3 show a list of issue tracker systems and bug tracker systems2.

1Based on http://en.wikipedia.org/wiki/Comparison_of_revision_control_
software

2Based on http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_

69

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Source Code Management Systems Retrieving Data
AccuRev
Aldon
Alienbrain
AllChange
AllFusion Harvest Change Manager
AVS
Bazaar
BitKeeper
ClearCase
Code Coop
Codeville
CVS
CVSNT
darcs
DesignSync
Endevor
FileHamster
Git
GNU arch
LibreSource Synchronizer
Mercurial
MKS
Mogware
Monotone
Perforce
PlasticSCM
PureCM
Razor
SourceAnywhere Hosted
SourceHaven
StarTeam
Subversion (SVN)
Surround SCM
SVK
Team Foundation Server
Telelogic Synergy
Vault
Visual SourceSafe Software

Figure A.1: Types of source code management systems and the availability
to extract data from them

70

http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Issue Tracking Systems Retrieving Data Issue Tracking Systems Retrieving Data
Atadesk TagTicket
A.InformUP Target Helpdesk Software
ConSol CM Team Foundation Server
DevTrack Mojo Helpdesk
doTask! OTRS
Eventum Polarion ALM Enterprise
ExtraView Remedy Action Request System
fixx Request Tracker
FogBugz Roundup
GLPI ServiceCenter
h2desk SharpForge
HelpSpot Simpleticket
IBM Rational ClearQuest Spiceworks Desktop
Instant Business Network TagTicket
IssueNet tBits
IssueTrackerProduct Teamwork (software)
Issuetrak TeleSupport HelpDesk (software)
Issue Tracking Anywhere ThinMind.com
IssueView Tracker
Liberum Help Desk Unicenter Service Desk (USD)
LibreSource VisionProject
k Systems Management Appliances Web Help Desk
Open Project Manager Wrike
QueWeb XMsuite
SupportSuite Zendesk

Figure A.2: Types of issue tracker systems and the availability to extract
data from them

71

http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Bug Tracking Systems Retrieving Data Bug Trackin Systems Retrieving Data
16bugs IssueNet
A.InformUP IssueView
AceProject JIRA
AVS woodpecker issue tracker Mantis
Arctic Mercury Quality Center
BugAware OnTime
BUGS the Bug Genie pragma::tims
BugSentry phpBugTracker
BugTracker.NET Projistics
BugWiki NetResults Tracker
BugZap Quality Assurance Studio
Bugzero Redmine (home page)
Bugzilla Retrospectiva
Clarity Scarab
Collaboa SourceForge Tracker
CompassTMS TeamTrack
CVSTrac StarTeam
Debbugs TestDirector
Defect Manager TestTrack Pro
Defect Tracker Teton Suite
DisTract ThinMind.com
DITrack Trac
EmForge Track+
eTraxis TrackRecord
Eventum TrackStudio Enterprise
FITBugTrack Unfuddle
fixx VisionProject
Flyspray Volo Fixer
FogBugz WorkRoll
Fortress Wrike
Gemini XMsuite
GNATS yKAP
IBN Help Desk XStudio

Figure A.3: Types of bug tracking systems and the availability to extract
data from them

72

http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Figure A.4 shows the types of mailing lists and the availability to extract
data from them. Most of the mailing lists or similar tools (like forums) are
based on HTML format. So far, just mbox format is analysable.

Mailing Lists Retrieving Data
Mailman archives (mbox format)
HTML SourceForge
HTML Apache
HTML Debian
HTML Forums
Yahoo groups
Google groups
MSN groups
Others

Figure A.4: Types of mailing lists and the availability to extract data from
them

Regarding the source code, figure A.5 shows a list of the analysable source
code. Extra source code files are also analysable, however the tools have not
been included in the FLOSSMetrics platform.

Source Code Files Retrieving Data
C
Java
Perl
Python
Others

Figure A.5: Types of programming languages to be analysed

Finally, wikis are an important tool to document projects, however in
this side, tools are not developed and most of the analysis would include
semantic analysis, what is more complicated than the automatic analysis
addressed before.

systems

73

http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems
http://en.wikipedia.org/wiki/Comparison_of_issue_tracking_systems

Wiki Retrieving Data
MediaWiki
MoinMoin
TikiWiki
Twiki
Others

Figure A.6: Types of wikis and the availability to extract data from them

74

Appendix B

Tools and Metrics

B.1 Tools

Tools to be integrated in the FLOSSMetrics platform are next:

• CVSAnalY and CVSAnalY2 - They extract information our of
CVS, Subversion or Git repositories logs and transforms it in a database
SQL format.

• Mailing List Stats - tool for mapping mbox files of any mailing list
to a database.

• Bicho - It stores information from a given bug tracking system to a
database format. So far, it only works with SourceForge BTS.

• SLOCCount - This is a suite of programs for counting physical source
lines of code (SLOC) in large software systems. It can count physical
SLOC for a wide number of languages and also it can take a large set
of files. It provides some other analysis tools. Many projects are de-
veloped in more than one programming language. Using SLOCCount,
it is possible to quickly assess the percentage of source lines of code for
each used language. SLOCCount also computes the estimated effort
based on a COCOMO estimate. It is possible to customize COCOMO
parameters on the command line.

• PyMetrics - It provides metrics for Python programming language.
For instance McCabe’s Cyclomatic Complexity metric, LoC, Comments,
etc. Users can also define their own metrics using data from PyMetrics.
PyMetrics outputs SQL command files and CSV output.

75

• CCCC - C and C++ Code Counter) analyzes and reports measure-
ments on source code written in C, C++, and Java.

Metrics supported include lines of code, McCabe’s complexity and met-
rics proposed by Chidamber&Kemerer and Henry&Kafura. CCCC
computes the following metrics: Number of Modules, Lines of Code,
Lines of Comments, an approximation of McCabe’s Cyclomatic Com-
plexity, Information Flow (coupling between modules), Weighted Method
per Class, Depth of Inheritance, Number of Children, Coupling between
Objects, Fan In and Fan out.

• PerlMetrics - This tool provides metrics as counts lines, packages,
subs and complexity of Perl files.

B.2 Metrics

The next set of metrics are categorized by data source.

• Source Code Metrics.

Language, number of source lines of code, number of lines of code,
number of lines of comments, number of blank lines, number of func-
tions, complexity metrics, like mccabe max, mccabe min, mccabe sum,
mccabe mean, mccabe median and halstead metrics, like halstead length,
halstead vol, halstead level and halstead md.

• Source Code Managemente Repository. Per each of the next met-
rics, the mean, median, maximum, minimum, quartiles and standard
deviation will be calculated. Metrics can also be obtained dividing by
periods like month or year.

Size of files(CVS repositories), total time spent in the project by a de-
veloper, number of modifications (commits) in a file, time worked on a
file (difference between the last and first commit in that file), number of
active developers, number of commits, number of LOC (CVS reposito-
ries)(added and deleted), number of authors working on the same file,
number of authors working on the same file, number of revisions per
committer and number of files modified per author.

• Mailing Lists. Per each of the next metrics, the mean, median, max-
imum, minimum, quartiles and standard deviation will be calculated.
Also the data will be divided into periods of months or years.

76

Number of posters, number of posters per mailing lists, number of posts
per author, number of posts per author and mailing list, length of the
thread, number of replies, number of replies per distinct author and
number of replies per mailing list.

• Bug Tracking System. Per each of the next metrics, the mean,
median, maximum, minimum, quartiles and standard deviation will be
calculated. Also the metrics will be divided by periods, as month or
year.

Number of bugs per Status, number of bugs per submitter, number of
bugs per developer working on (assigned to), resolution time, number
of comments, number of changes (a change is carried out when one of
the fields is modified), number of people commenting in the same bug,
number of bugs per priority, backlog management index and percentile
of deliquent fixes

77

Bibliography

[BR05] A. Bonaccorsi and C. Rossi. Collection of activity data for
sourceforge projects. Technical Report: TR-2005-15, Uni-
versity of Notre Dame, 2005.

[Bug06] Bugtracking. A bug’s life cycle. http://dev.processing.

org/bugs/page.cgi?id=fields.html, Mit Dez 6 15:48:47
CET 2006.

[CO006] Beyond Low-Hanging Fruit: Seeking the Next Generation in
FLOSS Data Mining., 2006.

[Cod06] CodeCharge Studio. Conception Bug Tracking System.
http://www.gotocode.com/apps.asp?app_id=1, Mit Dez
6 12:09:51 CET 2006.

[Deu04] Rebecca L. Deuel. Automated bug tracking: The Promise
and the Pitfalls. IEEE Software, 21(1):100–103, 2004.

[Dou06a] Double Choco Latte. Screenshot Double Choco Latte
Searchresult. http://dcl.sourceforge.net/ss/

searchresult.png, Mon Dez 18 13:45:01 CET 2006.

[Dou06b] Double Choco Latte. Screenshot Double Choco Latte
Searchmenu. http://dcl.sourceforge.net/ss/

searchmenu.png, Mon Dez 18 13:45:07 CET 2006.

[Dou06c] Double Choco Latte. Screenshot Double Choco Latte Ac-
tion. http://dcl.sourceforge.net/ss/action.png, Mon
Dez 18 14:09:46 CET 2006.

[Ebe05] Christof Ebert. Bugzilla, ITracker and Other Bug Trackers.
IEEE Software, 22(2):11–13, 2005.

78

http://dev.processing.org/bugs/page.cgi?id=fields.html
http://dev.processing.org/bugs/page.cgi?id=fields.html
http://www.gotocode.com/apps.asp?app_id=1
http://dcl.sourceforge.net/ss/searchresult.png
http://dcl.sourceforge.net/ss/searchresult.png
http://dcl.sourceforge.net/ss/searchmenu.png
http://dcl.sourceforge.net/ss/searchmenu.png
http://dcl.sourceforge.net/ss/action.png

[FPG03a] Michael Fischer, Martin Pinzger, and Harald Gall. Analyz-
ing and Relating Bug Report Data for Bug Feature Tracking.
In Proceedings of the International Conference on Software
Maintenance, pages 90–99, 2003.

[FPG03b] Michael Fischer, Martin Pinzger, and Harald Gall. Popu-
lating a Relase History Database from Version Control and
Bug Tracking Systems. In Proceedings of the International
Conference on Software Maintenance, 2003.

[Fre00a] Free Software Foundation. What is GNATS? http:

//www.gnu.org/software/gnats/doc/gnats-faq-4.1.

999/gnats-faq.html#What-is-GNATS, Mit Dez 27 14:26:15
CET 200.

[Fre00b] Free Software Foundation. How it Works - User’s
View. http://www.gnu.org/software/gnats/doc/

gnats-faq-4.1.999/html_node/User-view.html#

User-view, Mit Dez 27 16:10:18 CET 200.

[Fre00c] Free Software Foundation. How it worksadministra-
tor’s view. http://www.gnu.org/software/gnats/doc/

gnats-faq-4.1.999/html_node/Administrator-View.

html#Administrator-View, Mit Dez 27 16:54:49 CET 200.

[Fre00d] Free Software Foundation. How to configure xinetd to
start gnatsd. http://www.gnu.org/software/gnats/doc/

gnats-faq-4.1.999/html_node/xinetd-configuration.

html#xinetd-configuration, Mit Dez 27 17:05:18 CET
200.

[Fre00e] Free Software Foundation. Gnatsd port number. http:

//www.gnu.org/software/gnats/doc/gnats-faq-4.1.

999/html_node/Port-Number.html#Port-Number, Mit
Dez 27 18:00:56 CET 200.

[Fre06a] Free Software Foundation. Double Choco Latte. http://

dcl.sourceforge.net/, Fre Dez 15 14:01:47 CET 2006.

[Fre06b] Free Software Foundation. GNATS - Summary. http://

savannah.gnu.org/projects/gnats, Mit Dez 27 13:05:21
CET 2006.

79

http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/gnats-faq.html#What-is-GNATS
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/gnats-faq.html#What-is-GNATS
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/gnats-faq.html#What-is-GNATS
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/User-view.html#User-view
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/User-view.html#User-view
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/User-view.html#User-view
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Administrator-View.html#Administrator-View
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Administrator-View.html#Administrator-View
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Administrator-View.html#Administrator-View
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/xinetd-configuration.html#xinetd-configuration
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/xinetd-configuration.html#xinetd-configuration
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/xinetd-configuration.html#xinetd-configuration
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Port-Number.html#Port-Number
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Port-Number.html#Port-Number
http://www.gnu.org/software/gnats/doc/gnats-faq-4.1.999/html_node/Port-Number.html#Port-Number
http://dcl.sourceforge.net/
http://dcl.sourceforge.net/
http://savannah.gnu.org/projects/gnats
http://savannah.gnu.org/projects/gnats

[GBPdlHQ+01] Jesus M. Gonzalez-Barahona, Miguel A. Ortuno Perez, Pe-
dro de las Heras Quiros, Jose Centeno Gonzalez, and Vi-
cente Matellan Olivera. Counting potatoes: the size of De-
bian 2.2. Upgrade Magazine, II(6):60–66, December 2001.

[Ger03] Daniel German. The gnome project: A case study of open
source, global software development. Software Process: Im-
provement and Practice, 8(4):201–215, 2003.

[Ger04] Daniel M. German. Mining CVS repositories, the
softChange experience. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburgh, UK,
2004.

[Gho04] A.R. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and tools. First
Monday, 8(4), 2004.

[HC04] J. Howison and K. Crowston. The perils and pitfalls of min-
ing sourceforge. In 26th International Conference on Soft-
ware Engineering, Edinburgh, Scotland, 2004.

[HK05] M. Hahsler and S. Koch. Discussion of a large-scale open
source data collection methodology. In Proceedings of the
38th Hawaii International Conference on System Sciences
(IEEE, HICSS ’05-Track 7), Jan 03-06, Big Island, Hawaii,
page 197b., 2005.

[HM05] Koch S. Hahsler M. Discussion of a large-scale open source
data collection methodology. In Proceedings of the 38th
Hawaii International Conference on System Sciences (IEEE,
HICSS ’05-Track 7), Jan 03-06, Big Island, Hawaii, page
197b., 2005.

[HS03] Kieran Healy and Alan Schussman. The ecology of open-
source software development. Technical report, University
of Arizona, USA, January 2003.
http://opensource.mit.edu/papers/healyschussman.pdf.

[IEE06] IEEE Organization. Bugzilla, ITracker, and
other bug trackers. http://ieeexplore.ieee.

org/search/freesrchabstract.jsp?arnumber=

1407819&isnumber=30525&punumber=52&k2dockey=

80

http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0

1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%

3E+metadata&pos=0, Mit Dez 6 08:39:44 CET 2006.

[JMC06] Howison J., Conklin M., and Crowston. Flossmole: A col-
laborative repository for floss research data and analyses.
International Journal of Information Technology and Web
Engineering, 1:17–26, 2006.

[Jup06] Jupitermedia Corporation. All About Open Source.
http://www.webopedia.com/DidYouKnow/Computer_

Science/2005/open_source.asp, Mit Dez 13 10:07:10
CET 2006.

[KK04] Joon Koh and Young-Gul Kim. Knowledge sharing in virtual
communities: an e-business perspective. Expert Syst. Appl.,
26(2):155–166, 2004.

[KSL03] G. Krogh, S. Spaeth, and K. Lakhani. Community, joining,
and specialisation in open source software innovation: a case
study. Research Policy, 32:1217–1241, 2003.

[LvH03] K. Lakhani and E. von Hippel. How open source soft-
ware works: ”free” user-to-user assistance. Research Policy,
32:923–943., 2003.

[Mas05] B Massey. Longitudinal analysis of long-timescale open
source repository data. In Proceedings of the 2005 Workshop
on Predictor Models in Software Engineering, (St. Louis,
Missouri, May 15 - 15, 2005). PROMISE ’05, 2005.

[MFH02] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two
case studies of open source software development: Apache
and mozilla. ACM Transactions on Software Engineering
and Methodology, 11(3), 2002.

[Moz06] Mozilla Organization. Bugzilla information. http://www.

bugzilla.org/, Mit Nov 29 15:28:03 CET 2006.

[MV00] Audris Mockus and Lawrence G. Votta. Identifying reasons
for software changes using historic databases. In Proceedings
of the International Conference on Software Maintenance,
pages 120–130, October 2000.

81

http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?arnumber=1407819&isnumber=30525&punumber=52&k2dockey=1407819@ieeejrns&query=%28bug+tracking%29+%3Cin%3E+metadata&pos=0
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/open_source.asp
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/open_source.asp
http://www.bugzilla.org/
http://www.bugzilla.org/

[Ope06a] Open Source Technology Group. Query Problem Reports.
http://freshmeat.net/screenshots/17301/18153/, Fre
Dez 29 15:26:05 CET 2006.

[Ope06b] Open Source Technology Group. TkGnats-Household
Projects. http://www.timshel.ca/tkgnats/query.jpg,
Fre Dez 29 15:41:39 CET 2006.

[Ope06c] Open Source Technology Group. Double Choco Latte.
http://sourceforge.net/project/showfiles.php?

group_id=1424, Mon Dez 18 14:23:27 CET 2006.

[PHP06a] PHP Helpdesk. PHP Helpdesk. http://phphelpdesk.

sourceforge.net/help.html, Mon Dez 18 12:30:53 CET
2006.

[PHP06b] PHP Helpdesk. Screenshot PHP Helpdesk. http:

//helpdesk.peachschools.org/index.php?login=goto,
Mon Dez 18 13:17:34 CET 2006.

[php06c] phpBugTracker. phpBugTracker-Working with Bugs.
http://phpbt.sourceforge.net/docs/bugdetail.html,
Mit Dez 20 14:03:27 CET 2006.

[php06d] phpBugTracker. Entering a bug. http://phpbt.

sourceforge.net/docs/userguide.html#PRIMER, Mit
Dez 20 15:50:32 CET 2006.

[RBM03] G. Robles, J.M. Barahona, and M. Michlmayr. Evolution of
volunteer participation in libre software projects: Evidence
from debain. ICSE ’03 Workshop on Open Source Software
Engineering, Portland,Oregon, May 3-10, 2003.

[RGB06] Gregorio Robles and Jesus M. Gonzalez-Barahona. Geo-
graphic location of developers at sourceforge. In Proceed-
ings of the 2006 international workshop on Mining software
repositories, ACM Press, pages 144–150, 2006.

[SDD05] Katherine J. Stewart, David P. Darcy, and Sherae L. Daniel.
Observations on patterns of development in open source soft-
ware projects. In 5-WOSSE: Proceedings of the fifth work-
shop on Open source software engineering, St. Louis, Mis-
souri, ACM Press, pages 1–5, 2005.

82

http://freshmeat.net/screenshots/17301/18153/
http://www.timshel.ca/tkgnats/query.jpg
http://sourceforge.net/project/showfiles.php?group_id=1424
http://sourceforge.net/project/showfiles.php?group_id=1424
http://phphelpdesk.sourceforge.net/help.html
http://phphelpdesk.sourceforge.net/help.html
http://helpdesk.peachschools.org/index.php?login=goto
http://helpdesk.peachschools.org/index.php?login=goto
http://phpbt.sourceforge.net/docs/bugdetail.html
http://phpbt.sourceforge.net/docs/userguide.html#PRIMER
http://phpbt.sourceforge.net/docs/userguide.html#PRIMER

[SIA06] Sulayman K. Sowe, Stamelos Ioannis, and Lefteris Angelis.
Identifying knowledge brokers that yield software engineer-
ing knowledge in oss projects. Information and Software
Technology, 48(11):1025–1033, 2006.

[SKS05] S.K. Sowe, A. Karoulis, and I. Stamelos. A constructivist
view on knowledge management in open source virtual com-
munities. In D.A. Figueiredo and A. Paula, editors, Manag-
ing Learning in Virtual Settings: The Role of Context, pages
290–308. Idea Group Inc., 2005.

[SSA07] Sulayman K. Sowe, Ioannis Stamelos, and Lefteris Ange-
lis. Understanding knowledge sharing activities in free/open
source software projects: An empirical study. Journal of
Systems and Software, 00:000–000, 2007.

[VA 06a] VA Software Corporation. SourceForge R© Features & Ben-
efits. http://dcl.sourceforge.net/, Fre Dez 15 13:10:27
CET 2006.

[VA 06b] VA Software Corporation. SourceForge, Optimizing Dis-
tributed Development. http://www.vasoftware.com/

sourceforge/, Mit Dez 13 15:12:33 CET 2006.

[VA 06c] VA Software Corporation. Collaboration. http://www.

vasoftware.com/sourceforge/collaboration.php, Mit
Dez 20 09:53:10 CET 2006.

[VA 06d] VA Software Corporation. Interoperability. http://www.

vasoftware.com/sourceforge/interoperability.php,
Mit Dez 20 10:36:17 CET 2006.

[VTG+06] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie, and
R.V. Sole. Self-organization patterns in wasp and open
source communities. IEEE Intelligent Systems, 21:36–40,
2006.

[Wik06a] Wikipedia Organization. First Computer Bug.
http://upload.wikimedia.org/wikipedia/commons/

8/8a/H96566k.jpg, Mit Dez 6 11:57:51 CET 2006.

[Wik06b] Wikipedia Organization. Bugzilla report. http://en.

wikipedia.org/wiki/Bugzilla, Mit Nov 29 10:12:45 CET
2006.

83

http://dcl.sourceforge.net/
http://www.vasoftware.com/sourceforge/
http://www.vasoftware.com/sourceforge/
http://www.vasoftware.com/sourceforge/collaboration.php
http://www.vasoftware.com/sourceforge/collaboration.php
http://www.vasoftware.com/sourceforge/interoperability.php
http://www.vasoftware.com/sourceforge/interoperability.php
http://upload.wikimedia.org/wikipedia/commons/8/8a/H96566k.jpg
http://upload.wikimedia.org/wikipedia/commons/8/8a/H96566k.jpg
http://en.wikipedia.org/wiki/Bugzilla
http://en.wikipedia.org/wiki/Bugzilla

[Wik06c] Wikipedia Organization. Bugzilla Lifecycle. http://en.

wikipedia.org/wiki/Image:BzLifecycle.png, Mit Nov
29 15:59:03 CET 2006.

[Wik06d] Wikipedia Organization. SourceForge. http://en.

wikipedia.org/wiki/SourceForge, Mon Dez 11 16:47:24
CET 2006.

[Wik06e] Wikipedia Organization. Proprietary software. http:

//en.wikipedia.org/wiki/Proprietary_software, Mon
Dez 11 16:53:11 CET 2006.

[Wik06f] Wikipedia, the free encyclopedia. SourceForge. http://

www.reference.com/browse/wiki/SourceForge, Mon Dez
11 17:26:25 CET 2006.

[XGCM05] J. Xu, Y. Gao, S. Christley, and S. Madey. A topological
analysis of the open source software development commu-
nity. In IEEE Proceedings of the 38th Hawaii International
Conference on System Sciences, (IEEE, HICSS ’05-Track
7), Jan 03-06, Big Island,Hawaii., page 198a., 2005.

[ZW04] Thomas Zimmermann and Peter Weissgerber. Processing
CVS data for fine-grained analysis. In Proceedings of the
International Workshop on Mining Software Repositories,
Edinburg, Scotland, UK, 2004.

84

http://en.wikipedia.org/wiki/Image:BzLifecycle.png
http://en.wikipedia.org/wiki/Image:BzLifecycle.png
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Proprietary_software
http://www.reference.com/browse/wiki/SourceForge
http://www.reference.com/browse/wiki/SourceForge

	Repositories of FLOSS and Repositories of Repositories
	Repositories of FLOSS
	Available Data in FLOSS Repositories
	Trends in FLOSS Studies and RoRs

	Versioning Systems
	Introduction
	Structure and Function
	Preprocessing: retrieval and parsing
	Data treatment and storage
	CVS
	Subversion
	Subversion Repository Access
	Comparison between Subversion and CVS
	Subversion Logs
	Subversion Repository Analysis

	Communication Tools - Mailing Lists
	Introduction
	Activities in Mailing Lists
	Mining mailing lists for FLOSS development and support
	Knowledge Sharing Metrics

	Bug-Tracking Systems
	Introduction
	Bug Tracking Systems
	Bugzilla
	General description
	Features
	Description
	Options
	Design
	Architecture
	Benefits
	Usage
	Data available
	Studies & Retrieval Tools

	Source Forge Tracker
	Technology
	Architecture
	Tracker

	GNATS
	Architecture
	GNATSweb
	TkGnats

	PHP Helpdesk
	PHPBugTracker
	Double Choco Latte

	Data Sources
	Tools and Metrics
	Tools
	Metrics

